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We propose to specialize the CCK duality theory} which associates
a8 dual problems minimization of an arbitrary convex function over
en arbitrary convex set in n-space with maximizaticn of a linear
function in non-negative variables of a generali:zed finite sequence
space subject to a finite system of linear equations, tc derive
Kuhn--Tucker ‘meoren2 extensions in situations invnlving (p:rtial)
differentiability of objective and constraint functions. There are
several ways to procure such generalizations as, for example, by
means of non-differentiable enalcogs of quasi-saddle point conditions
or in terms of a saddle pcint criterion itself. Since we are interested
here in exploring extensicns which involve some differentiability
conditions, ve shall proceed via the former course especially since
these conditions themselves are analogs of first order conditions of
the seddle point criterion?
For our purposes then, let f(u), and G(u) = (‘l(“)’ 32(“)""’31-(“))
be defined over an open convex set K in Rn. We shall say that

f(u) 1s simple plecewise differentiably convex if f(u) = max (r(“(u)).
J=1,2,...,N

vhere t(J)(u) is contimuously differcntiable and convex over K. We
shall assume that G(u) 48 continuocusly differentiable and concave,
but the extension to simple piecewise concave functions will become
apparent during the course of proof for functions of this class.

1 See Charnes-Cooper-Kortanek [4]) and [s).

2 8ee Kuhn-Tucker [ 7] and Arrov-Hurwicz-Uzawa (1].

3 See Arrow-Rurwvicz-Usawa, ibid., where the authors shov that in the
case of differentiability the quasi-saddle point condition implies
the saddle point condition.



Theorem (Generalized Quasi-Saddle Point Theorem for Simple
Plecewise Differentiably Convex Functions)

Let f(u) and C(u) have the propertics derined above and consider
the ainimization prodblea

min f(u)
subje~t ta Glu) € O.

Assume thc constraint sct C = (u | G(u) 2 0) has an interior point..l Tr.en
u® 2n C 4ie an optimal solution to the winimization problem if and
only if there exists positive vectors

(1) _(2)

¢ = (qc »Na (N)

yeossNg ) and A® = ().S,“) ,...,xf,") ) such that

the following properties hold:

N
@) - @M | onf) + T e |l .o
J=1 - jel .

@ 2 21 wma (3) Gt =0, and G(ue) & 0%, vhere

ok 3= (/e - o))
Preliminary Leamas on Canonical Clcsure for Differential Systems

By introducing support systems for both objective and constraint
functions, we obtain the following equivalent semi-infinite problem (I)
with semi-infinite dual (II), which, for the moment, we write in general
rform.

(1) (1)
ain 2 max!:claqco!:ci).i
a i
T,
- s
z “Qc da,ncA ino -1
B 2 e, 1 e "IQug+ IR e 0

1‘1\11: type of constraint qualification has strong intuitive appeal especially
in the case of non-differentiability.

However, it is known that non-differentiable analogs to
the most general constraint qualification for which differentiasble
Lagrangian techniques are valid (see [6]) involve support systems which
are themselves Farkas-Minkowski systems. (See [4) and [5)).

zlctntionally speaking, brlu. is the gradient of f evaluated at u®*. We use

superscripts to ccrrespond to mncttoxxs and subscripts to coleo to
elements in the tndex set. Thus, 3fyJ) denotes the gradient of flJ) evalu-
ated at the point @ € A. For convenience, "G € A" may be identified with
"\bu“, when A -‘-Rn.



- P

Recall that a system of linear inequalities iam cencnically closed
if it has interior points and thec coefficient set is cc-;m:t—.r
We need the following lemma.

Lemma 1: Suppose that the system is canonically closed and that u,
solves (I), i.e., the minimun z, = f(u,) is attained. Then in the
dual expression, (II), for z,, the only supports which arise are those
passing through the point (z,, u,), i.e., the only support planes with

- T
- 0 and S+ § O are those for which z, = “‘Qo $ 4 and uP, =c,.

Proof: By the extended dual theorem, there exist N, A such that

= * -,
Z, : dana + I cix1

We must show that if 1% >0, then z, = ufqo +d_ end if A} >0, then
“z’i - eio
Pirst, z, - u.tQa 2 da, for all a. Hence

EanesZene-C (uR) e =z, -L (ulQ) e
aaa a a a a a a a a

Therefore,

- T *
zg L dcn; + f ci).: S 2, -: (u.Qa) 'l: + i’. ci).: ) L.e.,

(a) - i(uf%) B eieppio

1 See [4) and [5]. Note that canonical closure is a sufficient condition

but not necuur{ for the validity of the extended dual theorem as
pointed out in [¥).
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On the other hand, by dual feasibility,

ur ['g%'ﬁ"fpi"‘{l = ur (0) = O.

However, since n;{.Pi € N for all i, we can rewrite this as follows:

T
(B) 0= l;-u.Q’th + L u,P c, - ;*: uR n¥ + f c N

Therefore combining (A) and (B) we have,
L ulR N* = I c AW,
a“’ aa 1

Two conclusions follow:
(Cl) z‘.-t[us%*%] N8, vhere L N8 w1, &0, and
a [ §

T,
- F u.% + da' Hence 2z, = u.TQ. + dc for every @ with 't&> 0.

(c)x: PAp = L
u tie

S ->z tr - ¢, )\ =0
. (ugPy - ¢, )0

11

Hence A >0 implies mf!'1 -c,.
Proof of Theorea

With respect to the minimization prodblem of the Theorem, consider
the particular semi-infinite equivalent

main ¢ . (1)

subject to & - u"ar(g) 2 r(")(ua) - u ar(g) , 3 91,2000,

“‘l‘h(;) 2 .‘(1)(%) + “:k(‘)(\h)' 1e1,2,...,8
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for all @ € A, where A 18 some index set in Rn(e.g. the convex
constraint set C). Since C has interior points, it follows that

this linear inequality system also does. Form a cenonical nomgigtionl,
(i.e., divide each inequality by a positive constant to make the sum

of the absolute values of the coefficients sum to 1), to obtain an
equivalent system with bounded coefficients and interiority.

(1)

min z

hdesk W “(g)‘ 4 uraf(g)“(g) 2 fm(“a)“(g) uc‘af(a) (J)’ "(g) >0
u"ag(;’ v(é) . 8(1)(“0‘)‘,(&) & %38(1)(%),(;)' v(§)> 0

m“ J.‘,a'aoo,n’ MOC‘c
Now form a canonical closure by possibly enlarging the index set

to A 2 A and edjoining the corresponding limiting inequalities which
are of the form; M(J)l -u Q(J) & d(J)

T (1) 1 -
\xl”aic(x for @ € A - A.

Let (I) denote this new cananically cloogd equivalent (which differs
from (I) by only these possidbly adjoined inequalities and also has
interior points).

Nov if u* is optimal for ‘(I) it 1s also optimal for the
canonically closed equivelent (I) and lemma 1 applies. However, any
of the possidly nevly adjoined inequalities which are actively {nvolved
in the dual are positive multiples of differentisl Lyperplanes already
in the system, for suppose one of them has a X(‘,) >0, say,
u(g)z - u Q(”: a(-’) vith G e A - A. Then by lemma 1, the support

plane “(J) Q(g) = d(g) contains the point (u*, f(u*)) 1.e.,

See (5), p 114
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p(g)t(\w) - p(g)z. = u’TQ(g) + d(g? or equivalently, the plane

u(g z = uTQ(J) d(g) is tangent to the surface z = f(")(u) at

the point u%*. Since t(")(u) is continuously differentiable, and

\
since ,.-((‘;’z s uTc»“) d(J) over C, this tangent plane is uinque

up to a constant Eutive uulctxlple, and therefore we do not need to
adjoin these additional inequalities. A similar argument obviously
holds for the constraint functions.

We nov present the semi-infinite dual (IT) and derive the

conditions of the theorenm.

e f:‘, [,(a)(“a)“(a) o a,(a) (J)h(J) *ﬁ (- ‘(1)(““),(1)

subject to
‘;‘ u(g)#g) & i
,; (a,(a) (J))-(J) ,,1: 38(;) (;):(;) R
and » Xao.

By the dual theorem there exists a dual optimal solution (w*, I#).
By lemma 1 n* has non-zero coordinates corresponding only to support
planes passing through the optimum (u*, z.), 1.e., those gredient
tangent planes at this point, coe for each fumction £19). This also

applies t. A* and constraint functions .‘1) , and therefore ve may vrite



.

-'i' - (—él)' cey -;lf,N)) ard A% = (Yil), . {Sm))‘ Thus, upon
setting nid) = Wl IRI) ror ga1, Lon ane () L) (D)

for 1 =1, ..., m, we obtain the foilowing dual optimal conditions:

/ = =

(1) g oarl® (9, a0 L,
1
ard (2) ¥ qt‘” %
J

vhere a1l 09 ana (Va0

The equality of dual functionales yields,
t(us) =z, = £ €00 (un) ol _ g wTorld) (3 5 T aglt) abt)
J J 1

vx (el aft)
i

i

stnce £(9)(u¥) sr(us) for a1l  and g')(u*) >0 for a1 1, 1t
therefore follows that, (3) r.g(i)(u') lﬁi) = 0. PFurthermore, since
f(u*) = max (r(J)(uﬁ)), it follows that QSJ) = 0 whenever

f(‘))(u') < f(u*), giving conditicn (2). Thus, the three conditions
of the theorem are proved.

On the other hand, given positive vectors n* and A\* gatisfying
conditions (1), (2), and (3) with respect to u*, then since nﬁ") ¢ 0
and '«i‘”{ 0 1in the canonically closed system (I), we obtain dual
feasivle eolutions upon settiing —qﬁ") » q(.")/',sid) and xsi)-lii)/v:.
furthermore, the dual objective value is [ f(")(uf) 'IsJ)' and condition
(2) tmplies that f(u*) = & r(a)\u*)q("’) giving dual equality of

cbjective functions, thereby proving that (f(u%), u®) is optimal.
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Our generalization ¢f the quasi-saddle point version of the Kuhn-
Tucker Theorem is not as gereral as we may possidbly get, but it does
indicate a unified approach to studv these equivrlences under more
general circumstances. In fact, we are already obtaining results for
generalized saddle-point equivalence theorems for arbitrary convex
functions over Rn. This is the subject of another paper and will be
reported on elsewhere,

Already thece methods have rhown that the crucial property of
the ccnstraint functions ie the Farlias-Minltows!dd property, which 1is
a property of the functions themselves expressed in terms of finite

'

positive linear combinations of their 'gradients." Geometric
Qqualifications are sufficient restricticns on the constraining
functions to permit such Farlas-Minliows!i expressions. In general,
however, it may be necessary to go beyond the natural gradient
inequalities provided by the constraint functiocns to cttain strong
duality results.

In conclueion, ve illustrate this now by constructing a canonically
closed equivalent for the one-variable Slater example by adjoining a
r v variadble to the gradient inequality system following the methods

of our regularization procedures for semi-infinite programs. }/

Restating the Slater example, we have:
(1)
min X

subject to -(1-x)% >0 vith unique optiimm

x, = 1. Introducing a differential system of supports to contain the
optimm, wve obtain the egquivalent prodlem:

(1)
min x

subject to 2(1-a) x >1-a® for 0<a<?.

Ygee salter (7], (4] p 216, and (5], p 119



Iet M and V be large positive numbers, either real or non-
Archimedean, i.e. larger than any real mubex&{ and construct the
following semi-infinite dual regularizations.

(rg)
min Mt + Xx
subject to t « 2(1-a) x >1a®, O0<a<?
x >-V
-x >-V
(1)
max L (1-02) Ay - wh.w
a
subject to b xa e M
a

£2(1-a) A+ At oA e
a

a
A's >0.

Observe that problem (l’a) is canonically closed and that
t >0 1s included in the inequality system and corresponds to the
index point G = 1. As stated adove, M may be vieved as real or
non-Archimedean, and therefore ve shall dsrive dual optimal
solutions for (IR) and (!IR) in a manner vhich is valid for either
case.

We know that (t,x) = (0,1) 1s (IR)-feutble with functional
value 1. Thus, ve search for a solution (t,, x,) vith objective
value <1, if it exists, and therefore ve assume x, <1l. By lemma 1,
this optimm involves only support planes vhich are tangent to it and
therefore involves only its own gradient inequality with index poin*
a, = x,. But this implies t, = (1-a,)* yielding (Zg)-objective value
#(1-a,)? + a,. Applying the usual differential methods for finding a
minimum to this function yields the Taylor expansion,

~gee (3) pp T56-T



M1 - @) +a, --mm-'iou(a. - agn' 1)2 for 0 <a, <2,

an equation which is obviously valid for arbitrary M. This tells

oM - 1 -

us to take a, = M to obtain minimum cbjective value W

Furthermore, the point (t,, x,) = (h—:;r. gg—,—;—l-) is (I.n)-tuaible

eM - 1

Sy =1-0°-2(0)x, for 0<a<2,

because t > 11? -(a -

vhich is a restatement of (IR)-teuibluty. But taking X, =N,
'»

the dual variable associated with the dbinding constraint, and
Ay =0 for a fa, and AY 27 20, ylelds a dual (IIR)-solution
vith equality of dual odbjective functions, and therefore shows that
in fact the two solutions form dual optimal eoclutioms for prodblems
(IR) -(IIR) vhether M is viewved as real or non-Archimedean.
Observe that the dual solution, A®, is an extreme point of the
associated generalized finite sequence space 1 and as such the non-
sero coordinate is linear and hamogeneous in )3{ in particular,
xa.-l(. Two courses of action vith respect to M are now open to
us. First, if M 1s real, ve may let M - e 80 that (t,, x,) - (0,1),
the solution to the Slater prodblem, vith corresponding dual veriasbdble
characterized by )’a. - ». Second, viewving M as non-Archimedean,
ve odtain dual optimal solutions in Eilbert's field with common
objective value 1 - l'/,‘“ vhich in the extended ordering is larger

than any real number less than 1, but itself is less than 1.

Y gee (¥) p 211

See [2), vhere this statement was first proved for finite
linear programming over non-Archimedean ordered fields.
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